

MG Chemicals UK Limited

Version No: A-1.01 Safety Data Sheet (Conforms to Regulation (EU) No 2015/830) Issue Date: 17/06/2019 Revision Date: 19/03/2020 L.REACH.GBR.EN

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

1.1. Product Identifier

Product name	9680		
Synonyms	SDS Code: 9680-Liquid; 9680-945ML, 9680-3.78L		
Other means of identification	Toluene		

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	solvent
Uses advised against	FOR INDUSTRIAL USE ONLY

1.3. Details of the supplier of the safety data sheet

Registered company name	MG Chemicals UK Limited MG Chemicals (Head office)			
Address	Heame House, 23 Bilston Street, Sedgely Dudley DY3 1JA United Kingdom	9347 - 193 Street Surrey V4N 4E7 British Columbia Canada		
Telephone	+(44) 1663 362888	+(1) 800-201-8822		
Fax	Not Available	+(1) 800-708-9888		
Website	Not Available	www.mgchemicals.com		
Email	sales@mgchemicals.com	Info@mgchemicals.com		

1.4. Emergency telephone number

Association / Organisation	N Verisk 3E (Access code: 335388)
Emergency telephone number	+(44) 20 35147487
Other emergency telepho number	e +(0) 800 680 0425

SECTION 2 HAZARDS IDENTIFICATION

2.1. Classification of the substance or mixture

Classification according to regulation (EC) No 1272/2008 [CLP] [1]	H336 - Specific target organ toxicity - single exposure Category 3 (narcotic effects), H373 - Specific target organ toxicity - repeated exposure Category 2, H225 - Flammable Liquid Category 2, H315 - Skin Corrosion/Irritation Category 2, H361 - Reproductive Toxicity Category 2, H304 - Aspiration Hazard Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

2.2. Label elements

Hazard pictogram(s)

SIGNAL WORD DANGER

Hazard statement(s)

H336	May cause drowsiness or dizziness.			
H373	ay cause damage to organs through prolonged or repeated exposure.			
H225	flammable liquid and vapour.			
H315	Causes skin irritation.			
H361	Suspected of damaging fertility or the unborn child.			
H304	May be fatal if swallowed and enters airways.			

Not Applicable

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.				
P210	eep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.				
P260	not breathe dust/fume/gas/mist/vapours/spray.				
P271	in a well-ventilated area.				
P280	ar protective gloves/protective clothing/eye protection/face protection.				
P240	Fround and bond container and receiving equipment.				
P241	Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment.				
P242	Use non-sparking tools.				
P243	Take action to prevent static discharges.				

Precautionary statement(s) Response

P301+P310	IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.			
P308+P313	IF exposed or concerned: Get medical advice/ attention.			
P331	Do NOT induce vomiting.			
P370+P378	In case of fire: Use alcohol resistant foam or normal protein foam to extinguish.			
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.			
P302+P352	F ON SKIN: Wash with plenty of water and soap.			
P303+P361+P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower].			
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.			
P332+P313	If skin irritation occurs: Get medical advice/attention.			
P362+P364	Take off contaminated clothing and wash it before reuse.			

Precautionary statement(s) Storage

P403+P235	Store in a well-ventilated place. Keep cool.		
P405	Store locked up.		

Precautionary statement(s) Disposal

P501		Dispose of contents/container in accordance with local regulations.
------	--	---

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classification according to regulation (EC) No 1272/2008 [CLP]
1.108-88-3 2.203-625-9 3.601-021-00-3 4.01-2119471310-51- XXXX 01-2120766415-50-XXXX	100	toluene *	Flammable Liquid Category 2, Reproductive Toxicity Category 2, Specific target organ toxicity - single exposure Category 3, Specific target organ toxicity - repeated exposure Category 2*, Skin Corrosion/Irritation Category 2, Aspiration Hazard Category 1; H225, H361d ***, H336, H373 **, H315, H304 [2]
Legend:	1. Classified by Chemwatch; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 3. Classification drawn from C&L * EU IOELVs available		

SECTION 4 FIRST AID MEASURES

4.1. Description of first aid measures

Eye Contact	If this product comes in contact with eyes: Vash out immediately with water. If irritation continues, seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary.

- Fig spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.
- If swallowed do NOT induce vomiting
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- ► Observe the patient carefully.

 ► Never give liquid to a person
 - ▶ Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
 - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
 - Seek medical advice.
 - Avoid giving milk or oils.
 - Avoid giving alcohol.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

Any material aspirated during vomiting may produce lung injury. Therefore emesis should not be induced mechanically or pharmacologically. Mechanical means should be used if it is considered necessary to evacuate the stomach contents; these include gastric lavage after endotracheal intubation. If spontaneous vomiting has occurred after ingestion, the patient should be monitored for difficult breathing, as adverse effects of aspiration into the lungs may be delayed up to 48 hours.

Following acute or short term repeated exposures to toluene:

- Toluene is absorbed across the alveolar barrier, the blood/air mixture being 11.2/15.6 (at 37 degrees C.) The concentration of toluene, in expired breath, is of the order of 18 ppm following sustained exposure to 100 ppm. The tissue/blood proportion is 1/3 except in adipose where the proportion is 8/10.
- Metabolism by microsomal mono-oxygenation, results in the production of hippuric acid. This may be detected in the urine in amounts between 0.5 and 2.5 g/24 hr which represents, on average 0.8 gm/gm of creatinine. The biological half-life of hippuric acid is in the order of 1-2 hours.
- Primary threat to life from ingestion and/or inhalation is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (eg cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 <50 mm Hg or pCO2 > 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial damage has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenaline) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.
- Lavage is indicated in patients who require decontamination; ensure use.

BIOLOGICAL EXPOSURE INDEX - BEI

These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV):

 Determinant
 Index
 Sampling Time
 Comments

 o-Cresol in urine
 0.5 mg/L
 End of shift
 B

 Hippuric acid in urine
 1.6 g/g creatinine
 End of shift
 B, NS

 Toluene in blood
 0.05 mg/L
 Prior to last shift of workweek

NS: Non-specific determinant; also observed after exposure to other material

B: Background levels occur in specimens collected from subjects NOT exposed

SECTION 5 FIREFIGHTING MEASURES

5.1. Extinguishing media

- Foam.
- Dry chemical powder.
- ► BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- ▶ Wear breathing apparatus plus protective gloves in the event of a fire.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- ► Consider evacuation (or protect in place).
- Fire Fighting

 Fight fire from a safe distance, with adequate cover.
 - If safe, switch off electrical equipment until vapour fire hazard removed.
 - ▶ Use water delivered as a fine spray to control the fire and cool adjacent area.
 - Avoid spraying water onto liquid pools.
 - ▶ **Do not** approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - ▶ If safe to do so, remove containers from path of fire.

► Severe fire hazard wh

- Liquid and vapour are highly flammable.
 Severe fire hazard when exposed to heat, flame and/or oxidisers.
- ▶ Vapour may travel a considerable distance to source of ignition.
- Heating may cause expansion or decomposition leading to violent rupture of containers.

On combustion, may emit toxic fumes of carbon monoxide (CO).

Combustion products include:

carbon dioxide (CO2)

other pyrolysis products typical of burning organic material.

Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Fire/Explosion Hazard

6.1. Personal precautions, protective equipment and emergency procedures

See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Clean up all spills immediately.

Minor Spills

- ▶ Remove all ignition sources
- Avoid breathing vapours and contact with skin and eyes.
- ▶ Control personal contact with the substance, by using protective equipment.
- ► Contain and absorb small quantities with vermiculite or other absorbent material.
- Wipe up.
- ▶ Collect residues in a flammable waste container.

Chemical Class: aromatic hydrocarbons

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE RA	RANK APPLI	CATION COLL	LECTION	LIMITATIONS
--------------------	------------	-------------	---------	-------------

LAND SPILL - SMALL

Feathers - pillow	1	throw	pitchfork	DGC, RT
cross-linked polymer - particulate	2	shovel	shovel	R,W,SS
cross-linked polymer- pillow	2	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	3	shovel	shovel	R, I, P,
treated clay/ treated natural organic - particulate	3	shovel	shovel	R, I
wood fibre - pillow	4	throw	pitchfork	R, P, DGC, RT

LAND SPILL - MEDIUM

cross-linked polymer -particulate	1	blower	skiploader	R, W, SS
treated clay/ treated natural organic - particulate	2	blower	skiploader	R, I
sorbent clay - particulate	3	blower	skiploader	R, I, P
polypropylene - particulate	3	blower	skiploader	W, SS, DGC
feathers - pillow	3	throw	skiploader	DGC, RT
expanded mineral - particulate	4	blower	skiploader	R, I, W, P, DGC

Major Spills

Legend

DGC: Not effective where ground cover is dense

R: Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988

- ► Clear area of personnel and move upwind.
- ▶ Alert Fire Brigade and tell them location and nature of hazard.
- May be violently or explosively reactive.
- ▶ Wear breathing apparatus plus protective gloves.
- ▶ Prevent, by any means available, spillage from entering drains or water course.
- Consider evacuation (or protect in place).
- ► No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Water spray or fog may be used to disperse /absorb vapour.
- Contain spill with sand, earth or vermiculite.
- Use only spark-free shovels and explosion proof equipment.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

7.1. Precautions for safe handling

Safe handling

- ▶ Containers, even those that have been emptied, may contain explosive vapours.
- ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers

Contains low boiling substance:

Storage in sealed containers may result in pressure buildup causing violent rupture of containers not rated appropriately.

- ► Check for bulging containers.
- Vent periodically
- ▶ Always release caps or seals slowly to ensure slow dissipation of vapours
- ▶ Electrostatic discharge may be generated during pumping this may result in fire.
- ► Ensure electrical continuity by bonding and grounding (earthing) all equipment.
- Restrict line velocity during pumping in order to avoid generation of electrostatic discharge (<=1 m/sec until fill pipe submerged to twice its diameter, then <= 7 m/sec).
- Avoid splash filling.
- ► Do NOT use compressed air for filling discharging or handling operations.
- ▶ Avoid all personal contact, including inhalation.
- ▶ Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked
- ▶ Avoid smoking, naked lights, heat or ignition sources
- ▶ When handling, DO NOT eat, drink or smoke
- Vapour may ignite on pumping or pouring due to static electricity.
- ▶ DO NOT use plastic buckets
- Earth and secure metal containers when dispensing or pouring product.
- ▶ Use spark-free tools when handling.
- ▶ Avoid contact with incompatible materials.
- ▶ Keep containers securely sealed.
- Avoid physical damage to containers.
- · Always wash hands with soap and water after handling.
- ▶ Work clothes should be laundered separately.
- ▶ Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin

Fire and explosion protection

See section 5

Other information

- ▶ Store in original containers in approved flame-proof area.
- No smoking, naked lights, heat or ignition sources.
- ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped.
- Keep containers securely sealed.
 - Store away from incompatible materials in a cool, dry well ventilated area.
 Protect containers against physical damage and check regularly for leaks.
- ► Observe manufacturer's storage and handling recommendations contained within this SDS.

7.2. Conditions for safe storage, including any incompatibilities

Packing as supplied by manufacturer.

- ▶ Plastic containers may only be used if approved for flammable liquid.
- ► Check that containers are clearly labelled and free from leaks.
- ▶ For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure.

Suitable container

- For materials with a viscosity of at least 2680 cSt. (23 deg. C)
- For manufactured product having a viscosity of at least 250 cSt. (23 deg. C)
- Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used.
- Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages
- ▶ In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic.

Toluene

- reacts violently with strong oxidisers, bromine, bromine trifluoride, chlorine, hydrochloric acid/ sulfuric acid mixture, 1,3-dichloro-5,5-dimethyl-2,4-imidazolidindione, dinitrogen tetraoxide, fluorine, concentrated nitric acid, nitrogen dioxide, silver chloride, sulfur dichloride, uranium fluoride, vinyl acetate
- ▶ forms explosive mixtures with strong acids, strong oxidisers, silver perchlorate, tetranitromethane
- ▶ is incompatible with bis-toluenediazo oxide
- attacks some plastics, rubber and coatings
- ▶ may generate electrostatic charges, due to low conductivity, on flow or agitation.

For alkyl aromatics

The alkyl side chain of aromatic rings can undergo oxidation by several mechanisms. The most common and dominant one is the attack by oxidation at benzylic carbon as the intermediate formed is stabilised by resonance structure of the ring.

Storage incompatibility

- Following reaction with oxygen and under the influence of sunlight, a hydroperoxide at the alpha-position to the aromatic ring, is the primary oxidation product formed (provided a hydrogen atom is initially available at this position) this product is often short-lived but may be stable dependent on the nature of the aromatic substitution; a secondary C-H bond is more easily attacked than a primary C-H bond whilst a tertiary C-H bond is even more susceptible to attack by oxygen
- ▶ Monoalkylbenzenes may subsequently form monocarboxylic acids; alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids.
- Oxidation in the presence of transition metal salts not only accelerates but also selectively decomposes the hydroperoxides.
- Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo
 Criegee rearrangement easily.
- ▶ Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity.
- Microwave conditions give improved yields of the oxidation products.
- ▶ Photo-oxidation products may occur following reaction with hydroxyl radicals and NOx these may be components of photochemical smogs.

Oxidation of Alkylaromatics: T.S.S Rao and Shubhra Awasthi: E-Journal of Chemistry Vol 4, No. 1, pp 1-13 January 2007

- Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic rings and strong oxidising agents.
- Aromatics can react exothermically with bases and with diazo compounds

7.3. Specific end use(s)

See section 1.2

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

8.1. Control parameters

DERIVED NO EFFECT LEVEL (DNEL)

Not Available

PREDICTED NO EFFECT LEVEL (PNEC)

Not Available

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)	toluene	Toluene	50 ppm / 192 mg/m3	384 mg/m3 / 100 ppm	Not Available	Skin
UK Workplace Exposure Limits (WELs)	toluene	Toluene	50 ppm / 191 mg/m3	384 mg/m3 / 100 ppm	Not Available	Sk

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
toluene	Toluene	Not Available	Not Available	Not Available

Ingredient	Original IDLH	Revised IDLH
toluene	500 ppm	Not Available

MATERIAL DATA

IFRA Prohibited Fragrance Substance

The International Fragrance Association (IFRA) Standards form the basis for the globally accepted and recognized risk management system for the safe use of fragrance ingredients and are part of the IFRA Code of Practice. This is the self-regulating system of the industry, based on risk assessments carried out by an independent Expert Panel For toluene:

Odour Threshold Value: 0.16-6.7 (detection), 1.9-69 (recognition)

NOTE: Detector tubes measuring in excess of 5 ppm, are available.

High concentrations of toluene in the air produce depression of the central nervous system (CNS) in humans. Intentional toluene exposure (glue-sniffing) at maternally-intoxicating concentration has also produced birth defects. Foetotoxicity appears at levels associated with CNS narcosis and probably occurs only in those with chronic toluene-induced kidney failure. Exposure at or below the recommended TLV-TWA is thought to prevent transient headache and irritation, to provide a measure of safety for possible disturbances to human reproduction, the prevention of reductions in cognitive responses reported amongst humans inhaling greater than 40 ppm, and the significant risks of hepatotoxic, behavioural and nervous system effects (including impaired reaction time and incoordination). Although toluene/ethanol interactions are well recognised, the degree of protection afforded by the TLV-TWA among drinkers is not known.

Odour Safety Factor(OSF)

OSF=17 (TOLUENE)

8.2. Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant.

Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture velocities' of fresh circulating air required to effectively remove the contaminant.

8.2.1. Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the

square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 t/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

8.2.2. Personal protection

Eye and face protection

- ► Safety glasses with side shields
- Chemical goggles
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- ▶ Wear chemical protective gloves, e.g. PVC.
- ▶ Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be wom on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use

Hands/feet protection

Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- · Fair when breakthrough time < 20 min
- Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are
 only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Body protection

Other protection

See Other protection below

Overalls.

- ▶ PVC Apron.
- PVC protective suit may be required if exposure severe.
- Eyewash unit.
- Ensure there is ready access to a safety shower
- ▶ Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity.
- For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets).
- Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

'Forsberg Clothing Performance Index'.

The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection:

9680 Toluene

Material	CPI

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the 'Exposure Standard' (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor

Half-Face Respirator Full-Face Respirator Powered Air Respirator

PE/EVAL/PE	A
PVA	A
VITON	A
VITON/CHLOROBUTYL	A
TEFLON	В
BUTYL	С
CPE	С
NEOPRENE	С
NEOPRENE/NATURAL	С
NITRILE	С
NITRILE+PVC	С
PVC	С
SARANEX-23	С
SARANEX-23 2-PLY	С
VITON/NEOPRENE	С

^{*} CPI - Chemwatch Performance Index

A: Best Selection

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

up	to 5 x ES	A-AUS / Class 1	-	1
up	to 25 x ES	Air-line*	A-2	A-PAPR-2
up	to 50 x ES	-	A-3	-
50-	x ES	-	Air-line**	-

A-PAPR-AUS / Class

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

8.2.3. Environmental exposure controls

See section 12

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

9.1. Information on basic physical and chemical properties

Appearance	Clear			
Physical state	Liquid	Relative density (Water = 1)	0.87	
Odour	Not Available	Partition coefficient n-octanol / water	Not Available	
Odour threshold	Not Available	Auto-ignition temperature (°C)	407	
pH (as supplied)	Not Available	Decomposition temperature	Not Available	
Melting point / freezing point (°C)	-95	Viscosity (cSt)	<20.5	
Initial boiling point and boiling range (°C)	110	Molecular weight (g/mol)	Not Available	
Flash point (°C)	4	Taste	Not Available	
Evaporation rate	2.2 BuAC = 1	Explosive properties	Not Available	
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available	
Upper Explosive Limit (%)	8.0	Surface Tension (dyn/cm or mN/m)	Not Available	
Lower Explosive Limit (%)	1.2	Volatile Component (%vol)	Not Available	
Vapour pressure (kPa)	0.3	Gas group	Not Available	
Solubility in water	Immiscible	pH as a solution (1%)	Not Available	
Vapour density (Air = 1)	3.1	VOC g/L	Not Available	

9.2. Other information

Not Available

SECTION 10 STABILITY AND REACTIVITY

10.1.Reactivity	See section 7.2
10.2. Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
10.3. Possibility of hazardous reactions	See section 7.2
10.4. Conditions to avoid	See section 7.2
10.5. Incompatible materials	See section 7.2

B: Satisfactory; may degrade after 4 hours continuous immersion

10.6. Hazardous decomposition products

See section 5.3

SECTION 11 TOXICOLOGICAL INFORMATION

Inhaled

Ingestion

Skin Contact

Eve

Chronic

11.1. Information on toxicological effects

The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination

Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. The acute toxicity of inhaled alkylbenzenes is best described by central nervous system depression. As a rule, these compounds may also act as general anaesthetics.

Systemic poisoning produced by general anaesthesia is characterised by lightheadedness, nervousness, apprehension, euphoria, confusion, dizziness, drowsiness, tinnitus, blurred or double vision, vomiting and sensations of heat, cold or numbness, twitching, tremors, convulsions, unconsciousness and respiratory depression and arrest. Cardiac arrest may result from cardiovascular collapse. Bradycardia, and hypotension may also be produced. Inhaled alkylbenzene vapours cause death in animals at air levels that are relatively similar (typically LC50s are in the range 5000 -8000 ppm for 4 to 8 hour exposures). It is likely that acute inhalation exposure to alkylbenzenes resembles that to general anaesthetics.

Alkylbenzenes are not generally toxic other than at high levels of exposure. This may be because their metabolites have a low order of toxicity and are easily excreted. There is little or no evidence to suggest that metabolic pathways can become saturated leading to spillover to alternate pathways. Nor is there evidence that toxic reactive intermediates, which may produce subsequent toxic or mutagenic effects, are formed

Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemorrhaging, pulmonary oedema, progressing to chemical pneumonitis; serious consequences may result.

Signs and symptoms of chemical (aspiration) pneumonitis may include coughing, gasping, choking, burning of the mouth, difficult breathing, and bluish

coloured skin (cyanosis).

The material has NOT been classified by EC Directives or other classification systems as 'harmful by ingestion'. This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (a pliver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing

corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.

The material may accentuate any pre-existing dermatitis condition

Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.

Toxic effects may result from skin absorption Open cuts, abraded or irritated skin should not be exposed to this material

Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either

- ▶ produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).

Repeated or long-term occupational exposure is likely to produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, generally on the basis that results in animal studies provide sufficient evidence to cause a strong suspicion of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Chronic toluene habituation occurs following intentional abuse (glue sniffing) or from occupational exposure. Ataxia, incoordination and tremors of the hands and feet (as a consequence of diffuse cerebral atrophy), headache, abnormal speech, transient memory loss, convulsions, coma, drowsiness, reduced colour perception, frank blindness, nystagmus (rapid, involuntary eye-movements), hearing loss leading to deafness and mild dementia have all been associated with chronic abuse. Peripheral nerve damage, encephalopathy, giant axonopathy electrolyte disturbances in the cerebrospinal fluid and abnormal computer tomographic (CT scans) are common amongst toluene addicts. Although toluene abuse has been linked with kidney disease, this does not commonly appear in cases of occupational toluene exposures. Cardiac and haematological toxicity are however associated with chronic toluene exposures. Cardiac arrhythmia, multifocal and premature ventricular contractions and supraventricular tachycardia are present in 20% of patients who abused toluene-containing paints. Previous suggestions that chronic toluene inhalation produced human peripheral neuropathy have been discounted. However central nervous system (CNS) depression is well documented where blood toluene exceeds 2.2 mg%. Toluene abusers can achieve transient circulating concentrations of 6.5 %. Amongst workers exposed for a median time of 29 years, to toluene, no subacute effects on neurasthenic complaints and psychometric test results could be established.

The prenatal toxicity of very high toluene concentrations has been documented for several animal species and man. Malformations indicative of specific teratogenicity have not generally been found. Neonatal toxicity, described in the literature, takes the form of embryo death or delayed foetal growth and delayed skeletal system development. Permanent damage of children has been seen only when mothers have suffered from chronic intoxication as a result of 'sniffing'.

On the basis, primarily, of animal experiments, concern has been expressed by at least one classification body that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

9680 Toluene	TOXICITY	IRRITATION
9000 Toluene	Not Available	Not Available
	TOXICITY	IRRITATION
toluene	dermal (rat) LD50: >2000 mg/kg ^[1]	Eye (rabbit): 2mg/24h - SEVERE
	Inhalation (rat) LC50: 49 mg/l/4H ^[2]	Eye (rabbit):0.87 mg - mild

l	Oral (rat) LD50: 636 mg/kg ^[2]	Eye (rabbit):100 mg/30sec - mild
ı		Eye: adverse effect observed (irritating) ^[1]
ı		Skin (rabbit):20 mg/24h-moderate
		Skin (rabbit):500 mg - moderate
		Skin: adverse effect observed (irritating) ^[1]
		Skin: no adverse effect observed (not irritating) ^[1]

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

TOLUENE

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

For toluene

Acute Toxicity

Humans exposed to intermediate to high levels of toluene for short periods of time experience adverse central nervous system effects ranging from headaches to intoxication, convulsions, narcosis, and death. Similar effects are observed in short-term animal studies.

Humans - Toluene ingestion or inhalation can result in severe central nervous system depression, and in large doses, can act as a narcotic. The ingestion of about 60 mL resulted in fatal nervous system depression within 30 minutes in one reported case.

Constriction and necrosis of myocardial fibers, markedly swollen liver, congestion and haemorrhage of the lungs and acute tubular necrosis were found on autopsy.

Central nervous system effects (headaches, dizziness, intoxication) and eye irritation occurred following inhalation exposure to 100 ppm toluene 6 hours/day for 4 days.

Exposure to 600 ppm for 8 hours resulted in the same and more serious symptoms including euphoria, dilated pupils, convulsions, and nausea . Exposure to 10,000-30,000 ppm has been reported to cause narcosis and death

Toluene can also strip the skin of lipids causing dermatitis

Animals - The initial effects are instability and incoordination, lachrymation and sniffles (respiratory exposure), followed by narcosis. Animals die of respiratory failure from severe nervous system depression. Cloudy swelling of the kidneys was reported in rats following inhalation exposure to 1600 ppm, 18-20 hours/day for 3 days

Subchronic/Chronic Effects:

Repeat doses of toluene cause adverse central nervous system effects and can damage the upper respiratory system, the liver, and the kidney. Adverse effects occur as a result from both oral and the inhalation exposures. A reported lowest-observed-effect level in humans for adverse neurobehavioral effects is 88 ppm

Humans - Chronic occupational exposure and incidences of toluene abuse have resulted in hepatomegaly and liver function changes. It has also resulted in nephrotoxicity and, in one case, was a cardiac sensitiser and fatal cardiotoxin.

Neural and cerebellar dystrophy were reported in several cases of habitual 'glue sniffing.' An epidemiological study in France on workers chronically exposed to toluene fumes reported leukopenia and neutropenia. Exposure levels were not given in the secondary reference; however, the average urinary excretion of hippuric acid, a metabolite of toluene, was given as 4 g/L compared to a normal level of 0.6 g/L

9680 Toluene & TOLUENE

Animals - The major target organs for the subchronic/chronic toxicity of toluene are the nervous system, liver, and kidney. Depressed immune response has been reported in male mice given doses of 105 mg/kg/day for 28 days. Toluene in corn oil administered to F344 male and female rats by gavage 5 days/week for 13 weeks, induced prostration, hypoactivity, ataxia, piloerection, lachrymation, excess salivation, and body tremors at doses 2500 mg/kg. Liver, kidney, and heart weights were also increased at this dose and histopathologic lesions were seen in the liver, kidneys, brain and urinary bladder. The no-observed-adverse effect level (NOAEL) for the study was 312 mg/kg (223 mg/kg/day) and the lowest-observed-adverse effect level (LOAEL) for the study was 625 mg/kg (446 mg/kg/day).

Developmental/Reproductive Toxicity

Exposures to high levels of toluene can result in adverse effects in the developing human foetus. Several studies have indicated that high levels of toluene can also adversely effect the developing offspring in laboratory animals.

Humans - Variable growth, microcephaly, CNS dysfunction, attentional deficits, minor craniofacial and limb abnormalities, and developmental delay were seen in three children exposed to toluene in utero as a result of maternal solvent abuse before and during pregnancy

Animals - Sternebral alterations, extra ribs, and missing tails were reported following treatment of rats with 1500 mg/m3 toluene 24 hours/day during days 9-14 of gestation. Two of the dams died during the exposure. Another group of rats received 1000 mg/m3 8 hours/day during days 1-21 of gestation. No maternal deaths or toxicity occurred, however, minor skeletal retardation was present in the exposed fetuses. CFLP Mice were exposed to 500 or 1500 mg/m3 toluene continuously during days 6-13 of pregnancy. All dams died at the high dose during the first 24 hours of exposure, however none died at 500 mg/m3. Decreased foetal weight was reported, but there were no differences in the incidences of skeletal malformations or anomalies between the treated and control offspring.

Absorption - Studies in humans and animals have demonstrated that toluene is readily absorbed via the lungs and the gastrointestinal tract. Absorption through the skin is estimated at about 1% of that absorbed by the lungs when exposed to toluene vapor.

Dermal absorption is expected to be higher upon exposure to the liquid; however, exposure is limited by the rapid evaporation of toluene

Distribution - In studies with mice exposed to radiolabeled toluene by inhalation, high levels of radioactivity were present in body fat, bone marrow, spinal nerves, spinal cord, and brain white matter. Lower levels of radioactivity were present in blood, kidney, and liver. Accumulation of toluene has generally been found in adipose tissue, other tissues with high fat content, and in highly vascularised tissues.

Metabolism - The metabolites of inhaled or ingested toluene include benzyl alcohol resulting from the hydroxylation of the methyl group. Further oxidation results in the formation of benzaldehyde and benzoic acid. The latter is conjugated with glycine to yield hippuric acid or reacted with glucuronic acid to form benzoyl glucuronide. o-cresol and p-cresol formed by ring hydroxylation are considered minor metabolites

Excretion - Toluene is primarily (60-70%) excreted through the urine as hippuric acid. The excretion of benzoyl glucuronide accounts for 10-20%, and excretion of unchanged toluene through the lungs also accounts for 10-20%. Excretion of hippuric acid is usually complete within 24 hours after exposure.

Acute Toxicity	×	Carcinogenicity	×
Skin Irritation/Corrosion	✓	Reproductivity	✓
Serious Eye Damage/Irritation	×	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	✓
Mutagenicity	×	Aspiration Hazard	✓

Legend:

X – Data either not available or does not fill the criteria for classification

— Data available to make classification

12.1. Toxicity

9680 Toluene	ENDPOINT	TEST DURATION (HR)		SPECIES	VALUE		SOURCE
9000 Totuene	Not Available	Not Available		Not Available	Not Availab	ole	Not Available
	ENDPOINT	TEST DURATION (HR)	SPECII	ES		VALUE	SOURCE
	LC50	96	Fish			0.0073mg/L	4
toluene	EC50	48	Crusta	cea		3.78mg/L	5
toluerie	EC50	72	Algae o	or other aquatic plants		12.5mg/L	4
	BCF	24	Algae o	or other aquatic plants		10mg/L	4
	NOEC	168	Crusta	cea		0.74mg/L	5

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Within an aromatic series, acute toxicity increases with increasing alkyl substitution on the aromatic nucleus. For example, there is an increase in toxicity as alkylation of the naphthalene structure increases. The order of most toxic to least in a study using grass shrimp (Palaemonetes pugio) and brown shrimp (Penaeus aztecus) was dimethylnaphthalenes > methylnaphthalenes > naphthalenes.

Studies conclude that the toxicity of an oil appears to be a function of its di-aromatic and tri-aromatic hydrocarbons, which includes three-ring hydrocarbons such as phenanthrene.

The heavier (4-, 5-, and 6-ring) PAHs are more persistent than the lighter (2- and 3-ring) PAHs and tend to have greater carcinogenic and other chronic impact potential. PAHs in general are more frequently associated with chronic risks. These risks include cancer and often are the result of exposures to complex mixtures of chronic-risk aromatics (such as PAHs, alkyl PAHs,

benzenes, and alkyl benzenes), rather than exposures to low levels of a single compound.

Anthroene is a phototoxic PAH. UV light greatly increases the toxicity of anthracene to bluegill sunfish. Benchmarks developed in the absence of UV light may be under-protective, and biological resources in strong sunlight are at more risk than those that are not.

log Kow: 2.1-3 log Koc: 1.12-2.85 Koc: 37-260 log Kom: 1.39-2.89 Half-life (hr) air: 2.4-104

For toluene:

Half-life (hr) H2O surface water : 5.55-528 Half-life (hr) H2O ground : 168-2628 Half-life (hr) soil : <48-240 Henry's Pa m3 /mol: 518-694 Henry's atm m3 /mol: 5.94E-03 BOD 5 0.86-2.12, 5% COD : 0.7-2.52,21-27%

ThOD: 3.13
BCF: 1.67-380
log BCF: 0.22-3.28
Environmental fate:

Transport: The majority of toluene evaporates to the atmosphere from the water and soil. It is moderately retarded by adsorption to soils rich in organic material (Koc = 259), therefore, transport to ground water is dependent on the soil composition. In unsaturated topsoil containing organic material, it has been estimated that 97% of the toluene is adsorbed to the soil and only about 2% is in the soil-water phase and transported with flowing groundwater. There is little retardation in sandy soils and 2-13% of the toluene was estimated to migrate with flowing water; the remainder was volatilised, biodegraded, or unaccounted for. In saturated deep soils with no soil-air phase, about 48% may be transported with flowing groundwater.

Transformation/Persistence:

Air - The main degradation pathway for toluene in the atmosphere is reaction with photochemically produced hydroxyl radicals. The estimated atmospheric half life for toluene is about 13 hours. Toluene is also oxidised by reactions with atmospheric nitrogen dioxide, oxygen, and ozone, but these are minor degradation pathways. Photolysis is not considered a significant degradative pathway for toluene

Soil - In surface soil, volatilisation to air is an important fate process for toluene. Biodegradation of toluene has been demonstrated in the laboratory to occur with a half life of about 1 hour. In the environment, biodegradation of toluene to carbon dioxide occurs with a typical half life of 1-7 days.

Water - An important fate process for toluene is volatilization, the rate of which depends on the amount of turbulence in the surface water. The volatilisation of toluene from static water has a half life of 1-16 days, whereas from turbulent water the half life is 5-6 hours. Degradation of toluene in surface water occurs primarily by biodegradation with a half life of less than one day under favorable conditions (presence of microorganisms, microbial adaptation, and optimum temperature). Biodegradation also occurs in shallow groundwater and in salt water at a reduced rate). No data are available on anaerobic degradation of toluene in deep ground water conditions where aerobic degradation would be minimal.

Biota - Bioaccumulation in most organisms is limited by the metabolism of toluene into more polar compounds that have greater water solubility and a lower affinity for lipids. Bioaccumulation in the food chain is predicted to be low.

Ecotoxicity:

Toluene has moderate acute toxicity to aquatic organisms; several toxicity values are in the range of greater than 1 mg/L and 100 mg/L.

Fish LC50 (96 h): fathead minnow (Pimephales promelas) 12.6-72 mg/l; Lepomis macrochirus 13-24 mg/l;

guppy (Poecilia reticulata) 28.2-59.3 mg/l; channel catfish (Ictalurus punctatus) 240 mg/l; goldfish (Carassius auratus): 22.8-57.68 mg/l

Crustaceans LC50 (96 h): grass shrimp (Palaemonetes pugio) 9.5 ppm, crab larvae stage (Cancer magister) 28 ppm; shrimp (Crangon franciscorum) 4.3 ppm; daggerblade grass shrimp (Palaemonetes pugio) 9.5 mg/l

Algae EC50 (24 h): green algae (Chlorella vulgaris) 245 mg/l (growth); (72 h) green algae (Selenastrum capricomutum) 12.5 mg/l (growth)

DO NOT discharge into sewer or waterways

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
toluene	LOW (Half-life = 28 days)	LOW (Half-life = 4.33 days)

12.3. Bioaccumulative potential

Ingredient	Bioaccumulation
toluene	LOW (BCF = 90)

12.4. Mobility in soil

Ingredient	Mobility
toluene	LOW (KOC = 268)

12.5.Results of PBT and vPvB assessment

	P	В	Т
Relevant available data	Not Applicable	Not Applicable	Not Applicable
PBT Criteria fulfilled?	Not Applicable	Not Applicable	Not Applicable

12.6. Other adverse effects

No data available

SECTION 13 DISPOSAL CONSIDERATIONS

13.1. Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ▶ Reuse
- ▶ Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- ▶ Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Waste treatment options

Not Available

Sewage disposal options

Not Available

SECTION 14 TRANSPORT INFORMATION

Labels Required

Limited quantity: 9680-945ML

Land transport (ADR)

and transport (ADIC)			
14.1. UN number	1294		
14.2. UN proper shipping name	TOLUENE		
14.3. Transport hazard class(es)	Class 3 Subrisk Not Applicable		
14.4. Packing group	II		
14.5. Environmental hazard	Not Applicable		
	Hazard identification (Kemler)	33	
	Classification code	- 1	
14.6. Special precautions for	Hazard Label	3	
user	Special provisions	Not Applicable	
	Limited quantity	IL	
	Tunnel Restriction Code	2 (D/E)	

Air transport (ICAO-IATA / DGR)

14.1. UN number	1294
14.2. UN proper shipping name	Toluene
14.3. Transport hazard class(es)	ICAO/IATA Class 3 ICAO / IATA Subrisk Not Applicable

	ERG Code 3L	
14.4. Packing group	- II	
14.5. Environmental hazard	Not Applicable	
	Special provisions	Not Applicable
	Cargo Only Packing Instructions	364
14.6. Special precautions for user	Cargo Only Maximum Qty / Pack	60 L
	Passenger and Cargo Packing Instructions	353
	Passenger and Cargo Maximum Qty / Pack	5L
	Passenger and Cargo Limited Quantity Packing Instructions	Y341
	Passenger and Cargo Limited Maximum Qty / Pack	1L

Sea transport (IMDG-Code / GGVSee)

14.1. UN number	1294		
14.2. UN proper shipping name	TOLUENE		
14.3. Transport hazard class(es)	IMDG Class 3 IMDG Subrisk Not Applicable		
14.4. Packing group	П		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	EMS Number F-E , S-D Special provisions Not Applicable Limited Quantities 1 L		

Inland waterways transport (ADN)

14.1. UN number	1294			
14.2. UN proper shipping name	TOLUENE	TOLUENE		
14.3. Transport hazard class(es)	3 Not Applicable			
14.4. Packing group	П			
14.5. Environmental hazard	Not Applicable			
	Classification code	F1		
14.6. Special precautions for user	Special provisions	Not Applicable		
	Limited quantity	1L		
	Equipment required	PP, EX, A		
	Fire cones number	1		

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code

SOURCE	PRODUCT NAME	POLLUTION CATEGORY	SHIP TYPE
	Toluene	Υ	3

SECTION 15 REGULATORY INFORMATION

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

 \parallel TOLUENE(108-88-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS

EU Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products - Annex III - List of Substances which cosmetic products must not contain except subject to the restrictions laid down

EU Consolidated List of Indicative Occupational Exposure Limit Values (IOELVs)

EU European Chemicals Agency (ECHA) Community Rolling Action Plan (CoRAP) List of Substances

Europe ADN - European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways

Europe EC Inventory

Europe ECHA Registered Substances - Classification and Labelling - DSD-DPD

Europe European Agreement concerning the International Carriage of Dangerous Goods by Road

Europe European Customs Inventory of Chemical Substances

European Chemical Agency (ECHA) Classification & Labelling Inventory - Chemwatch Harmonised classification

European Trade Union Confederation (ETUC) Priority List for REACH Authorisation

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Annex I to Directive 67/548/EEC on Classification and Labelling of

Dangerous Substances - updated by ATP: 31

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI - Chemwatch Standard Format

European Union (EU) Transport of Dangerous Goods by Road - Dangerous Goods List

GESAMP/EHS Composite List - GESAMP Hazard Profiles

IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk

IMO Provisional Categorization of Liquid Substances - List 3: (Trade-named) mixtures containing at least 99% by weight of components already assessed by IMO, presenting safety

hazards International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code)

Regulations concerning the International Carriage of Dangerous Goods by Rail - Table A: Dangerous Goods List - RID 2019 (English)

UK Workplace Exposure Limits (WELs)

United Nations Recommendations on the Transport of Dangerous Goods Model Regulations

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable -: Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2015/830; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AICS	Yes
Canada - DSL	Yes
Canada - NDSL	No (toluene)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - ARIPS	Yes
Thailand - TECI	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date	19/03/2020
Initial Date	03/11/2016

Full text Risk and Hazard codes

H361d	Suspected of damaging the unborn child.
H373	May cause damage to organs through prolonged or repeated exposure.

SDS Version Summary

Version	Issue Date	Sections Updated
2.4.1.1.1	17/06/2019	Acute Health (inhaled), Acute Health (skin), Chronic Health, Exposure Standard, Personal Protection (Respirator), Physical Properties, Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

EN 166 Personal eye-protection

EN 340 Protective clothing

EN 374 Protective gloves against chemicals and micro-organisms

EN 13832 Footwear protecting against chemicals

EN 133 Respiratory protective devices

Definitions and abbreviations

PC — TWA: Permissible Concentration-Time Weighted Average PC — STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

Reason For Change

A-1.01 - Update to the emergency phone number information.